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PARTICLE DISPERSION IN A TURBULENT SHEAR FLOW

AFOSR Grant G-F49620-92-J-0418

Annual Report: 8/1/92 to 7/31/93.

Principal investigators: I.M. Kennedy and W. Kollmann

MAE Department, University of California at Davis, CA 95616

Research Objectives

The overall objective of the project is to test current modelling of droplet scale processes

for spray combustion in a well defined turbulent shear flow by comparison of measurements

of droplet dispersion and vaporization rates with computational predictions. Our specific

goals in this year of the project were to measure the autocorrelation function of the axial

velocity component of the droplets and to compare it with stochastic simulation results

and the modification of the experimental facility to accommodate a true spray using an

ultrasonic atomizer and droplets injected with a fluorescent dye.

The computational phase of the project is aimed at the development of a Large Eddy

Simulation method for the turbulent jet that has been the object of the experimental

study. The goal is to obtain a simulation of the jet under conditions that match the

experimental conditions so that droplet dispersion and vaporization rates can be compared

and correlations of drag and mass transfer evaluated. Our specific goal in this year of the

project was to implement a LES-model for the unresolved scales of the flow into the Navier-

Stokes solver and to compare the filtered and unfiltered results to evaluate the effect on

particle dispersion and vaporization rates.
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Research Accomplishments

Experimentai

One of the major unknowns in modeling particle dispersion in turbulent flows is the form

of the Lagrangian velocity autocorrelation function for fluid and discrete particles. If this

function is known, then it is possible to obtain the dispersion i.e., the mean square displace-

ment from a known initial point. Snyder and Lumley (1971) obtained the autocorrelation

function in a grid-generated turbulence but there are no data for particles in a turbulent

shear flow such as a jet. One phase of the project over the last year has been devoted to

obtaining this fundamental information.

The basic experimental nmethoo(loogy has been reported elsewhere (Call and Kennedy,

1991, 1992). A laser sheet is formed with cylindrical lenses. Droplets axe issued from a

piezoelectric generator into the jet near the centerline of the jet pipe exit. As a droplet

passes through the laser sheet. the scattered radiation is collected and imaged onto a

position-sensing photonmltiplier tube. This scheme has been modified to obtain vclocity

and correlation information. Two sheets of parallel light are produced with a beam splitter

and right angle prism. The parallel sheets are reflected back across the jet with a retro-

reflector with an adjustable spacing between the pairs of laser sheets. The time between

scattering spikes from each sheet yields droplet velocity data, whatever the droplcý location

across the jet cross-section. Autocorrelations of the axial particle velocity can be obtained

from the two velocity measurements from the two pairs of sheets. The autocorrelat ions

can be reported in either an Eulerian form as a function of spatial separation or in a quasi-

Lagrangian form as a function of time from the first transit through the first set of laser

sheets.

We have studied hexadecane droplets ranging in diameter from 50 pm to 35 Jim. 'I1n

addition, hollow glass spheres of 40 /tm diameter have been used to approximate fluid

particles. Figure 1 shows the quasi-Lagrangian autocorrelation function for axial particle

velocity at a number of axial locations along the jet. The correlations approximate expo-

nential functions quite well. Insufficient data are available at longer times to comment on
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the applicability of other functions, such a.; the Frenkiel function. The Stokes number of

the particles has a clear impact on the correlation function. The turbulence Stokes number

(based on a fluid integral length scale) is 0.16 and 0.33 for the 35 and 50 micron droplets

respectively.

Comparisons with a stochastic simulation have emphasized the difficulty inherent in

the prescription of length and time scales in turbulent flows with a Gne-point closure model.

The stochastic simulation under predicts the integral length scale for droplet motion by a

factor of two. Of coarse. tie model constant that prescribes the eddy life time could be

adjusted but there is little a priori guidance for the choice of this value.

Droplet dispersion measurements have been carried out during the last year with

varying jet Reynolds number. The Reynolds number is changed by adjusting the nozzle

diameter and the jet exit velocity to study the effect of the turbulent length and time

scales on droplet dispersion. Typical Reynolds numbers are Re = 10000, 20000, and

30000 obtained with the nozzle diameters D = 7mm, 10mm, and 12.6mm. Figure 1

shows the average axial velocity and the root mean square value of the axial velocity

fluctuations at the three different Reynolds numbers. The turbulent flow at the higher

Reynolds numbers will also create noticable radial velocities for the larger (90pmim) droplets

making its measurement possible and facilitating the study of the effect of the turbulent

scales on their dispersion.

The experimental facility is being modified to accommodate a true spray. Figure 2

shows the experimental set up for the spray simulation. An ultrasonic atomizer has been

installed in a chamber to provide a fine spray with droplet diameters from 20 to 80 jim.

The ultrasonic atomizer offers the advantage of very low air flow rates so that the flow of

air in the experiment is not greatly disturbed. Single droplets that contain a fluorescent

dye will be injected by the piezoelectric generator onto the centerline of the spray. A

holographic edge filter will remove the Mie scattering from the spray. The fluorescence

from the dye-containing droplet will he detected by the position-sensing photomultiplier

tube as before. We plan to study the impact of dispersed phase loading in the spray on

droplet dispersion with this system.
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Theory, and Computation.

Direct simulation of turbulent round jets is still not within the capabilities of present com-

puters (Reynolds, 1990). Hence, Large Eddy Simnulation of the turbulence in round jets is

the most realistic approach for the prediction of the flow field and truly Lagrangian particle

dynamics. The simulation of turbulent flow fields in round jets is based on accurate finite-

diffeence methods. which offer the flexibility necessary for the treatment of non-periodic

jet flows emitting from nozzles and the consideration of a variety of exit conditions. This

aspect of the project was described in detail in the final report for grant AFOSR 89-0392

and further details can be found in Lienau. Kennedy and Kollmann (1993) and Lienau and

Kollmann (1993) of the publlication list. Two new contributions were accomplished during

the period 1992-3. The numerical treatment of the coordinate axis r = 0 for unsteady flows

without symmetries was analyzed (details in the appendix) and a satisfactory method was

found to avoid the loss of accuracy near the axis. The second and main contribution was

the implementation of a LES-model for the non-resolved scales of the turbulence. The

Navier-Stokes equations are written for filtered variables

J--f d.r_'G(-x'. t)f.(x', t) (1)

where G(x_-x', t) denotes the filter function and f(x, t) a dependent variable. The Navier-

Stokes equations (in Cartesian coordinates for convenience) are filtered and emerge as

0,a
X-o 0 (2)

and
O a 1aP a2  a(

"• a•x( 3  ) pO.r + .r3ax3  aX3

The modified filtered pressure is defined by

1
P p + 3 ,Th t,•vO3  (4)

and the correlations of filtered an(l sub-grid-scale motion (v" = v", - fl,) are given by

L, c ,' - (5)
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C"'l = 1 '3 + V, ',' (6)

Rc, 3  = 1 -1 v 1, (7)

The present filter is the top hat filter and the closure for the correlations is given by

L.i + C,•,i-:-0 (8)

and the Smagorinsky mo(del for R, 3 (Reynolds. 1990)

R 0 3i-" - 2VTSOa (9)

where the eddy-viscosity is defined by

11T =_-(cA,_k)2('2-',aS,, )i (10)

and

A =_- (AXAyA:),3 (11)

and

S,3 =+ (12)

is the rate of strain produced by the filtered velocity field.

The result of modelling the sub-grid-scale motion is shown in fig.3 to fig.9. The

turbulent flow in the round jet of the experiments by Call and Kennedy (1991) at the

nominal Reynolds number of Rf = 15.000 is calculated for 0 < L _< 60 without the

LES-model, where the discretiztion error plays the role of the filter (Boris,1990), and with

the Smagorinsky model discribed above. The vorticity magnitude for the former case is

shown in fig.3 and in fig.4 for the latter case. It is evident that the LES-model using the

eddy viscosity (10) dampens the smaller scales and reduces the scale range. It turns out

that the spreading rate in the LES case is in very good agreement with the experimental

evidence. More importantly, the effect of the LES-model on the particle statistics is also

beneficial as the following figures prove. The dispersion of 113/im pentane particles in the

heated jet (temperature difference at jet pipe exit: 60 0 K) as function of the axial distance
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in fig.5 shows excellent igreement between measurement and numerical simulation with

the LES-model. Preliminary results for the auto-correlation function of the axial velocity

component of lighter (30pnm hexadecane) particles in fig.6 shows also close agreement with

the experiments of Cal! and Kennedy (1991). The calculation of the time of flight plays a

noticable role for dispersion as fig.7 illustrates. The experiment is limited to the mean time

of flight wheras the numerical simulationm allows the computation of individual times of

flight. It is evident froin fig.7 that the dispersion calculated with the experimental (mean)

time of flight is much closer to the measurements. The effect of the LES-viscosity on the

dispersic,li is shown in figS. The increase in viscosity due to the LES-model (10) decreases

the dispersion and improves the agreement with the measurements. Finally, mean particle

velocity in axial direction is fairly independent of the method of calculating the time of

flight as fig.9 shows.
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Figure captions

vskip 12pt Fig.1 Axial mean velocity and the rmns value of tile axial velocity fluctuations

at several Reynolds numbers.

Fig.2 Experimental set up for spray droplet dispersion.

Fig.3 Vorticity magnitude in planes 0 = 0 and 9 = 7r at dimensionless time t = 898 and a

62 x 16 x 190 grid for the flow in a round jet (Re = 15000) without the LES-model.

Fig.4 Vorticity magnitude in planes 0 = 0 and 0 = 7r at dimensionless time t = 870 and a

62 x 16 x 190 grid for the flow 1in a round jet (Re = 13000) with the LES-model.

Fig.5 Dispersion of 113I1i vaporizing pentane particles in a heated jet as function of axial

distance obtained with the LES model (c, = 0.05. full line) compared to the experiments

of Call and Kennedy (1991, broken line).

Fig.6 Auto-correlation fuiction for the axial velocity of 501in hexadecane particles in an

unheated jet as function of the mean time of flight (Full line: Numerical simulation with

the LES model, broken line: Experiment of Call and Kennedy. 1991).

Fig.7 Dispersion of 113pom vaporizing pentane particles in a heated jet as function of

time. The numerical results were obtained v :th the LES-model and the time of flight was

calculated using the true Lagrangean time of flight (full line) and the mean time of flight

(broken line) as in the experiments of Call and Kennedy (1991, dotted line).

Fig.8 Dispersion of 113prm vaporizing pentane particles in a heated jet as function of the

mean time of flight obtained without the LES model (c, = 0.0. full line), with the LES-

model (c, = 0.025, broken line) compared to the experiments of Call and Kennedy (1991,

dotted line).
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Fig.9 Nlean axial ve 4-irv f 1131/ii peut ttiw particles iti a heated je, as function of the

mean time of flight obtained with the LES-niidel (full line: True Lagrangean time, broken

line: Mean time of flight i.
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Appendix

Axis treatment of nonsymnietrical flows in cylindrical coordinates

W. Kollmann and J.J. Lienau

MAME Department, University of California at Davis, CA 95616

1.0 Introduction

The turbulent flow in round jets contains a rich variety of structures as documented in
experiments (Gutmark et al., 1990, Liepmann, 1991, Yoda et al., 1991, Mungal et al., 1992).
Direct and LES simulations of round jets are thus of great importance for the study of the
relevant structures in the development of the jet flow. One aspect of such simulations is the
treatment of the flow near the axis r = 0 in cylindrical coordinates.

The numerical solution of the Navier-Stokes equations in cylindrical coordinates requires
the proper treatment of the discretized equations at the axis r = 0. The present note is
devoted to this aspect of the solution method for flows that possess no particular symmetries.
The flow domain is given by E = {(r,0,() : 0 < r < R0 , 0 < < 27r,0 _< (! L} with
avTo -=- {(r,O,() r =0 0<0 < 21r,0 < ( _< L} as formally part of the boundary. However, it
will be shown that there are no boundary conditions available, but smoothness and uniqueness
conditions must be prescribed. The reason for this is the fact that all points in a'Do are inner
points. There are two ways to deal with this boundary. The finite difference grid can be
staggered such that r = 0 is not gridline and no particular action has to be taken, or the
Navier-Stokes equations are put into a form suitable for r = 0 and smoothness and uniqueness
of the dependent variables are enforced. The analysis for the latter case will be carried out
and some results for the former case will be presented.
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2.0 Navier-Stokes equations in cylindrical coordinates

The method for the solution of the Navier-Stokes equations is based on accurate finite dif-
ference schemes. Cylindrical coordinates (r, 0, () appropriate for circular jets are used. Grid
stretching is aplied in the r and ý directions to concentrate the grid points in the region
of interest and to remove the outer boundary (Ro denotes the radial location of the outer
boundary) as far as possible without wasting too many grid points (Lienau and Kollmann,
1993). However, the stretching transformation is irrelevant for the analysis of the variation
of the dependent variables near the axis r = 0 and the standard version of the equations will
be considered.

The Navier-Stokes equations for incompressible Newtonian fluids are set up in dimension-
less form (The jet pipe radius and the bulk velocity at the entrance section are the reference
scales) using cylindrical coordinates. Mass balance emerges then in the form

1 0 1ave 0t,
-- (rvr) + -- + - = 0 (1)
r ar r0 aOa(

The radial momentum balance is given by

OVr OVr Ve OVr Oav 2, lap 1 a0 (1O
-+ Vr -+-- + - rv_)j

r O9O r pOr Re [ar r(rr

1 0 2 Vr + 2Vr 2 avo (

+r2_502 n- ( r22)

The azimuthal momentum balance is given by

Ore Or+ yv Ove Ove +evo. 1 Op 1 a0 (1 0 )0-7 • -7+ -• + -=-+-- + - -(rvo)I
atrO +V Or a r prO6 Re Or -\rTr

10OVo 0 2Ve 2Ov, 1
+ __ 2ývq + a~r(3)

r2 902 a(2 r 0 •j

Finally, the axial momentum balance is given by

Ovc Ov+ v Ov¢ Ov l1p + 1 a v
at Re( 7re, Or

1 092 vC a 2 vC+r 2 v0 +O0v• J (4)
r2602~ OQ .1

Inspection of mass and momentum balances shows that the limit r --+ 0 produces singular
convective and viscous terms. Hence, a detailed investigation of this limit is called for to
make the design of an accurate numerical solution procedure possible.
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3.0 The limit r - 0

The analysis of the near axis variation of the dependent variables is based on the assumption
that all variables are at least three times continuously differentiable near r = 0. Hence we
can write

Op 1 0 OpP,- r3p( r, 9, , p(O, 0,ý) + r j-(0.0.)+r •rýtO, 0,C,")+O 3

and Ova ~1 r2 02 .c
t'a ~ v. (0,• -- u (O,,) + r--- (0, 0, () + - ý0(0, 0, ý) + O(r')(6

t'(r9,)v~O,, O)r- 9 Or+- 2 (6)

valid for 0 < r < r. with positive ra. We consider first the scalar variable p as r -, 0.
Differentiability at r = 0 implies that p must approach the same value as r --+ 0 for any angle
0 and fixed ý. It follows that the smoothness condition

p(OO.() = p(O,() (Si)

must hold for any scalar variable. This result leads to the pressure gradient at r = 0 since
differentiation of (5) with respect to 9 produces

Op 22 •0P(,r
(r, = r-L--(o, 0,) + P+ o() (7)

09 )r(90 2r a-7(,9r2O~

and we obtain

22 ~ (( 2 r(0,9 0)

Vp(r,9.0)= - + -r (0, ), + O(r2 (8)S- a2°-• (0, 0, ¢

The smootnness conditions for vectors follow in analogous fashion. The radial velocity com-
ponent vr at r = 0 becomes the angular component at an angle 0 shifted by I and vice versa.

Hence we have the smoothness conditions

Vr(OO,¢,t) = L'8(0, 0 + •,¢t) (S2)

and
VO(o, o, , t) = ,Vr(O,O0 -- C, 0,t (S3)

2'

Furthermore, shifting 0 by 7r reproduces the radial and angular components according to

v, (0, 0, t) = -Vr(O 0 + 7r, , t) (S4)

and
Vo(O 0, ,t) = -vO(O, 0 + 7r, (, t) (S5)
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The relations (S2) to (53) are insufficient to guarantuee smoothness of the velocity projected
into the r - 0 plane. This can be seen as follows. Smoothness implies that cr and co can be
expanded in Fourier series at r = 0

t'r(0,0) = P a• (xp(j(2n - 1)0)
n=O

cqý 0. 0) E aexp(i(2n - 1)9)
n=0

It is easy to see that (S4) and (S5) are satisfied and (S2) and (S3) lead to
a9  I( 1 )n+Ir

fn na

or

a ri 1)f 9
S=n

Hence, U,- determines c0 at r = 0 and vice versa. The conditions (52) to (S3) are thus
recognized as periodicity conditions. Consider now the vector _(0, 9. (' t) projected into the
r - 0 plane as shown in Fig.1. It is clear that the projection is unique. The projected vector
tP can be unique!, decomposed into the orthogonal components v,. and t,0 once the value for
the angular coordinate 9 has been chosen (see Fig.1).

V \r

0

Fig.1. Decomposition of a vector in the r - 0 plane.

It follows that

0Ur(, 0, ,t) = VP((, t)COS(aP(, t) -9 ) (Sr)

and
vo(O, , ,t) = cP((, t) sin(aP((, t) - 9) (S2-)
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hold. It is clear that (S1°) and (S2*) imply (S2) to (S5) but the reverse is not true. Several
useful relations can be obtained from (S1 ) and (S2*) by differentiation. It follows that

r (O,0, C, t) + ---d(0. 0,ý, t) =0 (10)

and

Or

hold.
Finally, the longitudinal velocity component t' must approach the same limit value as

r - 0 no matter what the angular coordinate 9 is, hence we have the smoothness condition

r ,(,, t) = v (0, ,,t) (S3-)

The following conclusions can be drawn from these considerations: The proper variables
decribing the vector v at r = 0 are t,P((,t), aP(C,t) and vý((,t). The smoothness conditions
(S2) to (S5) are insufficient to determine vP and aP uniquely.

3.1 Mass balance
Application of the expansion (6) to (1) leads to

1 ,,,r .() + J9 -( o (o) + 9 -(0)+ 'V((0)+

r 3 2 V,. - 2v¢ a(

r 3 8r2 (0)+a3932(0) + (--- (0) =O(r2) (12)

The solution cannot be smooth as r --+ 0 unless (10) holds, which takes care of the singularity.
Letting r --+ 0 we get then the proper form of mass balance for r = 0

±( (0

Or(0) + 92-V- (0) + --- (0) = 0 (13)

If differentiability to higher levels is assumed higher order versions of mass balance for r = 0
can be obtained. For instawice, applying (10) and (13) to (12), dividing by r and then letting
r approach zero leads to

3 a2Vr 1 v3 OV a V (14)
2 0r2 (0) + - r2(0)+ (0)=0

This procedure can be continued to arbitrary levels of differentiability.
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3.2 Radial momentum balance

The singular part of the convective terms in (2) is given by

Cr (O r) (15)
r (00

Series expansion of the expression in the paranthesis leads to
0v7  __> 82v lr 12 O3t,7  Ovo,_, 1__2 02ro
09, 09, 29- 030r Vr 2 0r2t, (0) + 3~r)(0) + r,-2-(0) + 2 r (0) - t.o(0) - r--07(0) r + 0(r

The smoothness condition (10) used already to insure the nonsingular character of mass
balance leads to

Ot'r-ve = r - 0) -- 22 (0) ý+O(r2) (16)

proving the nonsingular properties of convection as r -- 0. The singular viscous terms are
given by

(192 10 2vr 2 av(
,r tr(r)r) + r592 r2 01

Series expansion leads to
0 t r + 82V'r (0) -__ 82v# 0)=8Or---r + jr r (0) + !-1-r(0) - 2 -e(0) + ± (ooVr(0)- 20--r (U))

1 2a' 1 4Vr a3v9
+-j-(0)+ T- (0) - (0) + O(r)

2 r2 2O92r2 3698r 2

The radial momentum balance should be nonsingular as r = 0 is approached which implies
that the coefficients of r- 2 and r-' must vanish. Fist we note that the coefficient of r- 2 can
be recast as

(92 Vr Ovo,8 2v ,. 0 v-r
-Vr(o) + - 0•-(- 0 -• t = -Vr(o)) +- ( -(o)-,(o)

Smoothness as r -- 0 requires that (10) and (11) hold, which implies that the coefficient of
r-2 vanishes. The coefficient of r- 1 can be rearranged as

6P (8 2 Vr (0) 9(0)o-r (0 - -2 a-(0) = a (0)2- (0)
989r 9\ 000r Or

The radial momentum balance would be singular if this coefficient was nonzero. We conclude
that

a (0) -- 2 (0) = F((,t) (18)
OO8r 8r

insures nonsingularity. The radial momentum balance for r = 0 emerges now in the form

Ovr OV+ OVr OV+ + 1 0p + 1 13 9 2v,

Ot + Or 0-+ 8 0o-O + - 2 0-2

+O4 Vr + V 03 va
620r22 +aO(2 8--r2 (19)

strictly valid for r = 0.

6



3.3 Angular momentum balance

The singular part of the convective terms in (3) is given by

Co LO ( ,.20 )

Series expansion of the expression in the paranthesis leads to

Oi'theta Oe r 02( O+r0 1
(J I , r -- -90 (0) + r O or (0) + r (J + O(r2)

Tile smoothness condition (10) leads to

O--O + Vr = r Ov-9(0) + -ýr-(0)1 + O(r2) (21)

proving the nonsingular properties of convection as r -, 0. The (scalar variable) pressure can
be expanded and we get according to (5)

1op 02P (
700 = -- (0) + O(r)

The singular viscous terms are given by

-(r ) ++2t, + 
(2Vr

Or r Or r2 092 r2 09

Series expansion leads to

02, 02 -(O + 2 (0) +1- 03V2 Vr
--= + ) + 28-(')) + 00-'0-0(°) + 2-L(0))

1 0 2VO 1 04 O3V
+ -57r (0)+ 2oo (0)+ (0) + o(r)2 Or 50020ar 2 a9 r2

The angular momentum balance should be nonsingular as r = 0 is approached which implies
that the coefficients of r- 2 and r-1 must vanish. Fist we note that the coefficient of r- 2 can
be recast as

-t~0) + O go OV7  Ov7  +0 (Ovo

-vo(O) + -- , (0+ 2-r (O) -ve(O) + L(0) + 1(O) + Vr(O)

Smoothness as r -* 0 requires that (10) and (11) hold which implies that the coefficient of
r- 2 vanishes. The coefficient of r-1 can be rearranged as

Oav° "- O 2v" () 0 ("0o ,v , Ov,
,93 .(0) +- 292r(0) -v'-(0) + 29ý-r(0))
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The angular momentum balance would be singular if this coefficient was nonzero. We conclude
that

2VP
(0) + - (0) = )F(,t) (23)

insures nonsingularity. The angular momentum balance for r = 0 emerges now in the form

a91o 0 or, o o 0 o (t,1 + 1 0 2 p + f2 v e
+ tr- + + V- + 0 (9 r Op Or Re 39r2

a4 0 C)2 t _ 3_(4 )
+-39023r2 + - - r (24)

strictly valid for r = 0.

3.4 Longitudinal momentum balance
The singular part of the convective terms in (4) is a single term which can be expanded as

p 49c -= -jo(0) + ro--v(°() + 0(r2)1 (25)

Smoothness of t% as r -- 0 requires that r¢(0,0,( , t) is independent of the angular variable
0. hence we conclude that

Vr v = 2vC(0) + O(r) (27)
Tr 39 a93r

holds. The singular viscous terms are given by
13 / 3 v¢' 1 02v•

V7 -= 1 a (r-IC. + I- (27)
' r jr\ Dr r2 902

Series expansion leads to

V,=IDV( 1 192
3 VV () )+ avrC o + oa •,o-o(0) + Or(0)

r2 432 rk 92r D

+22-v( (0) + 3 O0V0 (0) + O(r)
O~r2  2 10292 r2

The longitudinal momentum balance should be nonsingular as r = 0 is approached which
implies that the coefficients of r- 2 and r- 1 must vanish. Fist we note that the coefficient of
r- 2 vanishes since vý(0, 9, C, t) must be independent of 0 according to ($3*). The coefficient
of r- must also vanish, hence we require

--7-0(0) + ')V((0) = 0 (28)
,902 O9r Or

to insure nonsingularity. The longitudinal momentum balance for r = 0 emerges now in the
form

formOC O 02v OV(_ 1 Op 1 r 02 v(

Di Or 'OOar a( PO ReI r

1 &Vý a¢v2 V ()
S 943o2o- + ( (29)

strictly valid for r = 0.
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3.5 Navier-Stokes equations at r = 0

The results of the previous section provide the proper form of the Navier-Stokes equations for
points on the grid surface 07D0 . We summarize the equations first and then discuss a possible
strategy for the solution. Mass balance for r = 0 is according to section 3.1 given by

Ovr O2t'e t,
2-(9 ) (0) + -t-g (0) + -C (0) = 0

O~r 9o~r a

The momentum balance in radial direction is according to section 3.2

Oa'r Ot'0 02ta' Otr Ovi 1p P 1 ( 3 (92 Ur

()-t + U•Or + -r +e (90ro Or p Or Re1 2 O2

+ '+ ti?'r 1)~+092ar2 + (-2 - NO r2

The angular momentum balance is not needed, as will be shown below, and the axial mo-
mentum balance is according to section 3.4 given by

Ot,¢ Ov, 02v€ Ore 1Op 1f( 9 02 v€
- + •"-• + VXIo-V + V- C -9 -+

1 O4v€ O2 v¢ )

+2 0920r2 + '9 2

The smoothness and uniqueness conditions obtained in section 3.0 can be applied as follows:
The velocity vector at r = 0 projected into the r - 0 plane is determined by vP and aP and
solving the radial momentum balance at r = 0 for 9 = 0 and 0 =. leads to

Ur(0, 0, , t) = vP(, t) cos(a"((, t)) (30)

and
V, (,t) = vP((,t)sin(aP((,t)) (31)

Hence we get

v"((, tj -= •/4o, 0, , t) + V2( , t) (32)

and

ap((, t) = arctan/ _ 1--- (33)\Vr(O, O,0, t)

for the projected velocity at r = 0. Once vP and aP have been determined the radial and
angular velocity components at r = 0 follow from (SI*) and (S2").

The strategy for the solution includes the following steps to deal with the axis r = 0:
Solve mass balance (13), the axial momentum balance (29) and the radial momentum balance

9



(19) for 0 = 0 and 0 = . Then we obtain the projected velocity vector from (32) and (33).
The radial and circumferential velocity components follow then from (Sl) and (S2") as

Ur(0,0,,t)= 0 vr(OO,(,t)+ tr(O, (t)cos(arctan -0) (34)

and

S-, (,t sin(arctan () (35)
•( Vr(O,0.(,t)

This completes the treatment of the axis if r = 0 is gridline.

4.0 Application

The finite-difference method described by Lienau and Kollmarm (1993) was applied to the
prediction of the flow in a round jet for a nominal Reynolds number of Re = 15000. The
development of the axial and circumferential instabilities leads quickly to solutions without
symmetries, hence requirung the proper treatment of the dependent variables near the axis
r = 0. Two treatments of the axis are considered:

(1) The grid contains r = 0 as gridline and the smoothness conditions (Si) to (S5) are
enforced but not the uniqueness conditions (Sl*) to (S3*).

(2) The grid is staggered and r = 0 is not gridline.
The results for case (1) in Fig.2 for velocity and in Fig.3 for vorticity show that spurious higher
harmonics in circumferential direction appear and are insufficiently damped. The solution
remains bounded but the near axis variation of velocity and vorticity are unsatisfactory. The
results for the case (2) in Fig.4 for velocity and in Fig.5 for vorticity on the other hand are
quite satisfactory.

5.0 Conclusions.

A finite difference method for the Navier-Stokes equations in cylindrical coordinates was
developed that is sixth order accurate in space and second order accurate in time. The
treatment of the dependent variables and the structure of the Navier-Stokes near r = 0 was
established using series expansiom- r.id the conditions that variables and equations must
remain nonsingular and unique for --+ 0. The application of two different treatments of the
axis r = 0 lead to the conclusion that staggered grids are superior over non-staggered grids,
where the enforcement of smoothness is not sufficient to produce satisfactory results. It is
clear that uniqueness conditions should be imposed in this case, but this has not yet been
tested.
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